Deploy Windows Core Server 2022 with Server Core App Compatibility Feature on Demand with Packer

I while ago I started with parker to create simple templates for use in my homelab.

It take some time to find the rights scripts and learning en understanding the HCL2 coding

But in related to Security reasons I want to use a Windows Core Server the smaller footprint.

What is Server Core App Compatibility Feature on Demand: https://learn.microsoft.com/en-us/windows-server/get-started/server-core-app-compatibility-feature-on-demand

Installing Features on Demand through Powerschell contains a bug. You may see “failure to download files”, “cannot download”, or errors like “0x800F0954” or file not found.

To Solve that I created I powerschell script to run the install twice: featuresondemand.ps1

You can find al the needed files on my Public Github Packer repository: https://github.com/WardVissers/Packer-Public

When running is showing like this:

A blue screen with white squares

Description automatically generated

It works for now, but there is one thing that would the hole thing a quiet nicer.
Passwords encrypted in a separate file.

VCF 5.0 running inside Nested ESXi server with only 64GB Memory

So I interested to trying to deploy latest release of VMware Cloud Foundation (VCF) 5.0 on my Windows 11 Home PC witch have 128GB and 16 core intel cpu.

William Lee wrote a nice artikel about VMware Cloud Foundation 5.0 running on Intel NUC

Disclaimer: This is not officially supported by VMware, please use at your own risk.

Requirements:

  • VMware Cloud Builder 5.0 OVA (Build 21822418)
  • VCF 5.0 Licenses Through VMUG ADVANTAGE
  • Home PC (Not Special Hardware)
    – 128GB Memory
    – Intel 12600 CPU
    – 4TB of NVME Storage
  • Windows 11 with VMware Workstation 17

Setup

Virtual Machines

  • DC02 (Domain Controller, DNS Server) (4GB 2vcpu)
  • VCF-M01-ESX01 (ESXi 8.0 Update 1a) (64GBGB 1x140GB 2x600NVME 2x NIC) (Every Thin Provisiond)
  • VCF-M01-CB01 (4GB and 4CPU) Only needed through First Deploment

Network settings on my PC

  • 1 IP In my home network
  • 172.16.12.1 (To Fool Cloudbuilder)
  • 172.16.13.1 (To Fool Cloudbuilder)

Procedure:

Install en Configure ESXi

Step 1 – Boot up the ESXi installer from de iso mount and then perform a standard ESXi installation.

Step 2 – Once ESXi is up and running, you will need to minimally configure networking along with an FQDN (ensure proper DNS resolution), NTP and specify which SSD should be used for the vSAN capacity drive. You can use the DCUI to setup the initial networking but recommend switching to ESXi Shell afterwards and finish the require preparations steps as demonstrated in the following ESXCLI commands:

esxcli system ntp set -e true -s pool.ntp.org
esxcli system hostname set –fqdn vcf-m01-esx01.wardvissers.nl

Note: Use vdq -q command to query for the available disks for use with vSAN and ensure there are no partitions residing on the 600GB disks.
Don’t change time server pool.ntp.org.

To ensure that the self-signed TLS certificate that ESXi generates matches that of the FQDN that you had configured, we will need to regenerate the certificate and restart hostd for the changes to go into effect by running the following commands within ESXi Shell:

/bin/generate-certificates
/etc/init.d/hostd restart

Cloudbuilder Config

Step 3 – Deploy the VMware Cloud builder in a separate environment and wait for it to be accessible over the browser. Once CB is online, download the setup_vmware_cloud_builder_for_one_node_management_domain.sh setup script and transfer that to the CB system using the admin user account (root is disabled by default).

Step 4 – Switch to the root user and set the script to have the executable permission and run the script as shown below

su –
chmod +x setup_vmware_cloud_builder_for_one_node_management_domain.sh
./setup_vmware_cloud_builder_for_one_node_management_domain.sh

The script will take some time, especially as it converts the NSX OVA->OVF->OVA and if everything was configured successfully, you should see the same output as the screenshot above.

A screenshot of a computer

Description automatically generated

Step 4 – Download the example JSON deployment file vcf50-management-domain-example.json and and adjust the values based on your environment. In addition to changing the hostname/IP Addresses you will also need to replace all the FILL_ME_IN_VCF_*_LICENSE_KEY with valid VCF 5.0 license keys.

Step 5 – The VMnic in the Cloud Builder VM will acked als a 10GB NIC so I started the deployment not through powershell but normal way in Cloud Builder GUI.

Your deployment time will vary based on your physical resources but it should eventually complete with everything show success as shown in the screenshot below. (I have one retry for finish)
A screenshot of a computer

Description automatically generated A screenshot of a cloud support

Description automatically generated
Here are some screenshots VCF 5.0 deployment running on my home PC.

A screenshot of a computer

Description automatically generated

A screenshot of a computer

Description automatically generated

Problems

Check this if you have problems logging in NSX:
https://www.wardvissers.nl/2023/07/26/nsx-endless-spinning-blue-cirle-after-login/

Next Steps.

1. Reploy with use of the Holo-Router https://core.vmware.com/resource/holo-toolkit-20-deploy-router#deploy-holo-router

2. Testing if can deploy Single Host VCF Workload Domain, on same way by following this blog post HERE! 😁
A screenshot of a computer

Description automatically generated

If I can start another 64GB ESXi Server.

Holodeck Toolkit Overview

Holodeck Toolkit 1.3 Overview

The VMware Cloud Foundation (VCF) Holodeck Toolkit is designed to provide a scalable, repeatable way to deploy nested Cloud Foundation hands-on environments directly on VMware ESXi hosts. These environments are ideal for multi-team hands on exercises exploring the capabilities of utilitizing VCF to deliver a Customer Managed VMware Cloud.

Graphical user interface, application

Description automatically generated

Delivering labs in a nested environment solves several challenges with delivering hands-on for a  product like VCF, including:  

  • Reduced hardware requirements: When operating in a physical environment, VCF requires four vSAN Ready Nodes for the management domain, and additional hosts for adding clusters or workload domains. In a nested environment, the same four to eight hosts are easily virtualized to run on a single ESXi host.   
  • Self-contained services: The Holodeck Toolkit configuration provides common infrastructure services, such as NTP, DNS, AD, Certificate Services and DHCP within the environment, removing the need to rely on datacenter provided services during testing.  Each environment needs a single external IP.
  • Isolated networking. The Holodeck Toolkit configuration removes the need for VLAN and BGP connections in the customer network early in the testing phase.  
  • Isolation between environments. Each Holodeck deployment is completely self-contained. This avoids conflicts with existing network configurations and allows for the deployment of multiple nested environments on same hardware or datacenter with no concerns for overlap. 
  • Multiple VCF deployments on a single VMware ESXi host with sufficient capacity. A typical VCF Standard Architecture deployment of four node management domain and four node VI workload domain, plus add on such as VMware vRealize Automation requires approximately 20 CPU cores, 512GB memory and 2.5TB disk.  
  • Automation and repeatability. The deployment of nested VCF environments is almost completely hands-off, and easily repeatable using configuration files.  A typical deployment takes less than 3 hours, with less than 15 min keyboard time.

Nested Environment Overview 

The “VLC Holodeck Standard Main 1.3” configuration is a nested VMware Cloud Foundation configuration used as the baseline for several Private Cloud operation and consumption lab exercises created by the Cloud Foundation Technical Marketing team. The Holodeck standard “VLC-Holo-Site-1” is the primary configuration deployed. The optional VLC-Holo-Site-2 can be deployed at any time later within a Pod.  VLC-Holo-Site-1 configuration matches the lab configuration in the VCF Hands-On Lab HOL-2246 and the nested configuration in the VCF Experience program run on the VMware Lab Platform. 

Each Pod on a Holodeck deployment runs an identical nested configuration. A pod can be deployed with a standalone VLC-Holo-Site-1 configuration, or with both VLC-Holo-Site-1 and VLC-Holo-Site-2 configurations active. Separation of the pods and between sites within a pod is handled at the VMware vSphere Standard Switch (VSS) level.  Each Holodeck pod connects to a unique VSS and Port Group per site.    A VMware vSphere Port Group is configured on each VSS and configured as a VLAN trunk.  

  • Components on the port group to use VLAN tagging to isolate communications between nested VLANs. This removes the need to have physical VLANs plumbed to the ESXi host to support nested labs.  
  • When the Holo-Site-2 configuration is deployed it uses a second VSS and Port Group for isolation from Holo-Site-1  

The VLC Holodeck configuration customizes the VCF Cloud Builder Virtual Machine to provide several support services within the pod to remove the requirement for specific customer side services. A Cloud Builder VM is deployed per Site to provide the following within the pod: 

  • DNS (local to Site1 and Site2 within the pod, acts as forwarder) 
  • NTP (local to Site1 and Site2 within the pod) 
  • DHCP (local to Site1 and Site2 within the pod) 
  • L3 TOR for vMotion, vSAN, Management, Host TEP and Edge TEP networks within each site 
  • BGP peer from VLC Tier 0 NSX Application Virtual Network (AVN) Edge (Provides connectivity into NSX overlay networks from the lab console)

The figure below shows a logical view of the VLC-Holo-Site-1 configuration within a Holodeck Pod. The Site-1 configuration uses DNS domain vcf.sddc.lab.

 Figure 1: Holodeck Nested Diagram

The Holodeck package also provides a preconfigured Photon OS VM, called “Holo-Router”, that functions as a virtualized router for the base environment. This VM allows for connecting the nested environment to the external world. The Holo-Router is configured to forward any Microsoft Remote Desktop (RDP) traffic to the nested jump host, known as the Holo-Console, which is deployed within the pod.

The user interface to the nested VCF environment is via a Windows Server 2019 “Holo-Console” virtual machine. Holo-Console provides a place to manage the internal nested environment like a system administrators desktop in a datacenter. Holo-Console is used to run the VLC package to deploy the nested VCF instance inside the pod. Holo-Console VM’s are deployed from a custom-built ISO that configures the following 

  • Microsoft Windows Server 2019 Desktop Experience with: 
  • Active directory domain “vcf.holo.lab” 
  • DNS Forwarder to Cloud Builder  
  • Certificate Server, Web Enrollment and VMware certificate template 
  • RDP enabled 
  • IP, Subnet, Gateway, DNS and VLAN configured for deployment as Holo-Console  
  • Firewall and IE Enhanced security disabled  
  • SDDC Commander custom desktop deployed 
  • Additional software packages deployed and configured 
  • Google Chrome with Holodeck bookmarks 
  • VMware Tools 
  • VMware PowerCLI 
  • VMware PowerVCF 
  • VMware Power Validated Solutions 
  • PuTTY SSH client 
  • VMware OVFtool 
  • Additional software packages copied to Holo-Console for later use 
  • VMware Cloud Foundation 4.5 Cloud Builder OVA to C:\CloudBuilder 
  • VCF Lab Constructor 4.5.1 with dual site Holodeck configuration
    • VLC-Holo-Site-1 
    • VLC-Holo-Site-2 
  • VMware vRealize Automation 8.10 Easy Installer

The figure below shows the virtual machines running on the physical ESXi host to deliver a Holodeck Pod called “Holo-A”. Notice an instance of Holo-Console, Holo-Router, Cloud Builder and four nested ESXi hosts.  They all communicate over the VLC-A-PG Port Group   

Figure 2: Holodeck Nested Hosts

Adding a second site adds an additional instance of Cloud Builder and additional nested ESXi hosts. VLC-Holo-Site-2 connects to the second internal leg of the Holo-Router on VLAN 20. Network access from the Holo-Console to VLC-Holo-Site-2 is via Holo-Router.

The figure below shows a logical view of the VLC-Holo-Site-2 configuration within a Holodeck Pod. The Site-2 configuration uses DNS domain vcf2.sddc.lab

 Figure 3: Holodeck Site-2 Diagram

Accessing the Holodeck Environment

User access to the Holodeck pod is via the Holo-Console.  Access to Holo-Console is available via two paths:

VLC Holodeck Deployment Prerequisites 

  • ESXi Host Sizing   
  • Good (One pod): Single ESXi host with 16 cores, 384gb memory and 2TB SSD/NVME 
  • Better (Two pod): Single ESXi host with 32 cores, 768gb memory and 4TB SSD/NVME 
  • Best (Four or more pods):  Single ESXi host with 64+ cores, 2.0TB memory and 10TB SSD/NVME 
  • ESXi Host Configuration: 
  • vSphere 7.0U3 
  • Virtual switch and port group configured with uplinks to customer network/internet  
  • Supports stand alone, non vCenter Server managed host and single host cluster managed by a vCenter server instance 
  • Multi host clusters are NOT supported
  • Holo-Build host 
  • Windows 2019 host or VM with local access to ESXI hosts used for Holodeck + internet access to download software. (This package has been tested on Microsoft Windows Server 2019 only) 
  • 200GB free disk space 
  • Valid login to https://customerconnect.vmware.com  
  • Entitlement to VCF 4.5 Enterprise for 8 hosts minimum (16 hosts if planning to test Cloud Foundation Multi region with NSX Federation) 
  • License keys for the following VCF 4.5 components
    • VMware Cloud Foundation
    • VMware NSX-T Data Center Enterprise
    • VMware vSAN Enterprise 
    • VMware vSphere Enterprise Plus 
    • VMware vCenter Server (one license)
    • VMware vRealize Suite Advanced or Enterprise
    • Note: This product has been renamed VMware Aria Suite
  • External/Customer networks required
    • ESXi host management IP (one per host) 
    • Holo-Router address per pod

Upcoming change (March 2020) – Microsoft to disable use of unsigned LDAP port 389

In March 2020, Microsoft is going to release a update which will essentially disable the use of unsigned LDAP which will be the default. This means that you can no longer use bindings or services which binds to domain controllers over unsigned ldap on port 389. You can either use LDAPS over port 636 or using StartTLS on port 389 but it still requires that you addd a certificate to your domain controllers. This hardening can be done manually until the release of the security update that will enable these settings by default.

How to add signed LDAPS to your domain controllers

You can read more about the specific change here –> https://support.microsoft.com/en-us/help/4520412/2020-ldap-channel-binding-and-ldap-signing-requirement-for-windows you can also read more here –> https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/ldap-channel-binding-and-ldap-signing-requirements-update-now/ba-p/921536

After the change the following features will be supported against Active Directory.

clipboard_image_0.png

How will this affect my enviroment?

Clients that rely on unsigned SASL (Negotiate, Kerberos, NTLM, or Digest) LDAP binds or on LDAP simple binds over a non-SSL/TLS connection stop working after you make this configuration change. This also applies for 3.party solutions which rely on LDAP such as Citrix NetScaler/ADC or other Network appliances, Vault and or authentication mechanisms also rely on LDAP. If you haven’t fixed this it will stop working. This update will apply for all versions.

Windows Server 2008 SP2,
Windows 7 SP1,
Windows Server 2008 R2 SP1,
Windows Server 2012,
Windows 8.1,
Windows Server 2012 R2,
Windows 10 1507,
Windows Server 2016,
Windows 10 1607,
Windows 10 1703,
Windows 10 1709,
Windows 10 1803,
Windows 10 1809,
Windows Server 2019,
Windows 10 1903,
Windows 10 1909

How to check if something is using unsigned LDAP?

If the directory server is configured to reject unsigned SASL LDAP binds or LDAP simple binds over a non-SSL/TLS connection, the directory server will log a summary under eventid 2888 one time every 24 hours when such bind attempts occur. Microsoft advises administrators to enable LDAP channel binding and LDAP signing as soon as possible before March 2020 to find and fix any operating systems, applications or intermediate device compatibility issues in their environment.

You can also use this article to troubleshoot https://docs.microsoft.com/en-us/archive/blogs/russellt/identifying-clear-text-ldap-binds-to-your-dcs

Credits: https://msandbu.org/upcoming-change-microsoft-to-disable-use-of-unsigned-ldap-port-389/

VMware vSphere PowerCLI 11.0

VMware vSphere PowerCLI 11.0 New Features

New features available on  VMware vSphere PowerCLI 11.0 is to support the new all updates and release of VMware products , find the below following has been features,

  • New Security module
  • vSphere 6.7 Update 1
  • NSX-T 2.3
  • Horizon View 7.6
  • vCloud Director 9.5
  • Host Profiles – new cmdlets for interacting with
  • New Storage Module updates
  • NSX-T in VMware Cloud on AWS
  • Cloud module multiplatform support
  • Get-ErrorReport cmdlet has been updated
  • PCloud module has been removed
  • HA module has been removed

Now we will go through above mentioned new features to find what functionality it bring to PowerCLI 11.0

What is PowerCLI 11.0 New Security Module

The new security module brings more powerful automation features to PowerCLI 11.0 available  new cmdlets include the following

  • Get-SecurityInfo
  • Get-VTpm
  • Get-VTpmCertificate
  • Get-VTpmCSR
  • New-VTpm
  • Remove-VTpm
  • Set-VTpm
  • Unlock-VM

Also New-VM cmdlet has enhanced functionality with the security module functionality and it includes parameters like KmsCluster, StoragePolicy, SkipHardDisks etc which can be used while creating new virtual machines with PowerCLI .In addition to that  Set-VM, Set-VMHost, Set-HardDisk, and New-HardDisk cmdlets are added.

Host Profile Additions

There are few additions to the VMware.VimAutomation.Core module that will make managing host profiles from PowerCLI

  • Get-VMHostProfileUserConfiguration
  • Set-VMHostProfileUserConfiguration
  • Get-VMHostProfileStorageDeviceConfiguration
  • Set-VMHostProfileStorageDeviceConfiguration
  • Get-VMHostProfileImageCacheConfiguration
  • Set-VMHostProfileImageCacheConfiguration
  • Get-VMHostProfileVmPortGroupConfiguration
  • Set-VMHostProfileVmPortGroupConfiguration

Storage Module Updates

These new Storage Module updates specifically for VMware vSAN , the updates has predefined time ranges when using Get-VsanStat. In addition  Get-VsanDisk has additional new properites that are returned including capacity, used percentage, and reserved percentage. Following are the  cmdlets have been added to automate vSAN

  • Get-VsanObject
  • Get-VsanComponent
  • Get-VsanEvacuationPlan – provides information regarding bringing a host into maintenance mode and the impact of the operation on the data, movement, etc

Additionally  following modules have been removed

  • PCloud module
  • HA module

Download now and start using

Update-module VMware.Powercli

Useful Links

HPE Oneview Powershell Clear Alerts

You need: https://github.com/HewlettPackard/POSH-HPOneView/wiki

################################################################
#
#Naam:              Oneview Clear Alarms
#Version:           0.1
#Author:            Ward Vissers
################################################################

 

# Adding PowerCLI core snapin, also check if powerCLI module is alsready added

if (!(get-module -name HPOneView.400 -erroraction silentlycontinue)) {
import-module HPOneView.400 | out-null
}

 

$oneviewserver = “oneview.wardvissers.nl”
Connect-HPOVMgmt -Hostname $oneviewserver
Get-HPOVAlert | Set-HPOVAlert -Cleared
Get-HPOVAlert -State Active | Set-HPOVAlert -Cleared

VMware vSphere 6.7

VMware is announcing vSphere 6.7, the latest release of the industry-leading virtualization and cloud platform. vSphere 6.7 is the efficient and secure platform for hybrid clouds, fueling digital transformation by delivering simple and efficient management at scale, comprehensive built-in security, a universal application platform, and seamless hybrid cloud experience.

vSphere 6.7 delivers key capabilities to enable IT organizations address the following notable trends that are putting new demands on their IT infrastructure:

  • Explosive growth in quantity and variety of applications, from business critical apps to new intelligent workloads.
  • Rapid growth of hybrid cloud environments and use cases.
  • On-premises data centers growing and expanding globally, including at the Edge.
  • Security of infrastructure and applications attaining paramount importance.

Let’s take a look at some of the key capabilities in vSphere 6.7:

Simple and Efficient Management, at Scale

vSphere 6.7 builds on the technological innovation delivered by vSphere 6.5, and elevates the customer experience to an entirely new level. It provides exceptional management simplicity, operational efficiency, and faster time to market, all at scale.

vSphere 6.7 delivers an exceptional experience for the user with an enhancedvCenter Server Appliance (vCSA). It introduces several new APIs that improve the efficiency and experience to deploy vCenter, to deploy multiple vCenters based on a template, to make management of vCenter Server Appliance significantly easier, as well as for backup and restore. It also significantly simplifies the vCenter Server topology through vCenter with embedded platform services controller in enhanced linked mode, enabling customers to link multiple vCenters and have seamless visibility across the environment without the need for an external platform services controller or load balancers.

Moreover, with vSphere 6.7 vCSA delivers phenomenal performance improvements (all metrics compared at cluster scale limits, versus vSphere 6.5):

  • 2X faster performance in vCenter operations per second
  • 3X reduction in memory usage
  • 3X faster DRS-related operations (e.g. power-on virtual machine)

These performance improvements ensure a blazing fast experience for vSphere users, and deliver significant value, as well as time and cost savings in a variety of use cases, such as VDI, Scale-out apps, Big Data, HPC, DevOps, distributed cloud native apps, etc.

vSphere 6.7 improves efficiency at scale when updating ESXi hosts, significantly reducing maintenance time by eliminating one of two reboots normally required for major version upgrades (Single Reboot). In addition to that, vSphere Quick Boot is a new innovation that restarts the ESXi hypervisor without rebooting the physical host, skipping time-consuming hardware initialization.

Another key component that allows vSphere 6.7 to deliver a simplified and efficient experience is the graphical user interface itself. The HTML5-based vSphere Client provides a modern user interface experience that is both responsive and easy to use. With vSphere 6.7, it includes added functionality to support not only the typical workflows customers need but also other key functionality like managing NSX, vSAN, VUM as well as third-party components.

Comprehensive Built-In Security

vSphere 6.7 builds on the security capabilities in vSphere 6.5 and leverages its unique position as the hypervisor to offer comprehensive security that starts at the core, via an operationally simple policy-driven model.

vSphere 6.7 adds support for Trusted Platform Module (TPM) 2.0 hardware devices and also introduces Virtual TPM 2.0, significantly enhancing protection and assuring integrity for both the hypervisor and the guest operating system. This capability helps prevent VMs and hosts from being tampered with, prevents the loading of unauthorized components and enables guest operating system security features security teams are asking for.

Data encryption was introduced with vSphere 6.5 and very well received.  With vSphere 6.7, VM Encryption is further enhanced and more operationally simple to manage.  vSphere 6.7 simplifies workflows for VM Encryption, designed to protect data at rest and in motion, making it as easy as a right-click while also increasing the security posture of encrypting the VM and giving the user a greater degree of control to protect against unauthorized data access.

vSphere 6.7 also enhances protection for data in motion by enabling encrypted vMotion across different vCenter instances as well as versions, making it easy to securely conduct data center migrations, move data across a hybrid cloud environment (between on-premises and public cloud), or across geographically distributed data centers.

vSphere 6.7 introduces support for the entire range of Microsoft’s Virtualization Based Security technologies. This is a result of close collaboration between VMware and Microsoft to ensure Windows VMs on vSphere support in-guest security features while continuing to run performant and secure on the vSphere platform.

vSphere 6.7 delivers comprehensive built-in security and is the heart of a secure SDDC. It has deep integration and works seamlessly with other VMware products such as vSAN, NSX and vRealize Suite to provide a complete security model for the data center.

Universal Application Platform

vSphere 6.7 is a universal application platform that supports new workloads (including 3D Graphics, Big Data, HPC, Machine Learning, In-Memory, and Cloud-Native) as well as existing mission critical applications. It also supports and leverages some of the latest hardware innovations in the industry, delivering exceptional performance for a variety of workloads.

vSphere 6.7 further enhances the support and capabilities introduced for GPUs through VMware’s collaboration with Nvidia, by virtualizing Nvidia GPUs even for non-VDI and non-general-purpose-computing use cases such as artificial intelligence, machine learning, big data and more. With enhancements to Nvidia GRID™ vGPU technology in vSphere 6.7, instead of having to power off workloads running on GPUs, customers can simply suspend and resume those VMs, allowing for better lifecycle management of the underlying host and significantly reducing disruption for end-users. VMware continues to invest in this area, with the goal of bringing the full vSphere experience to GPUs in future releases.

vSphere 6.7 continues to showcase VMware’s technological leadership and fruitful collaboration with our key partners by adding support for a key industry innovation poised to have a dramatic impact on the landscape, which is persistent memory. With vSphere Persistent Memory, customers using supported hardware modules, such as those available from Dell-EMC and HPE, can leverage them either as super-fast storage with high IOPS, or expose them to the guest operating system as non-volatile memory. This will significantly enhance performance of the OS as well as applications across a variety of use cases, making existing applications faster and more performant and enabling customers to create new high-performance applications that can leverage vSphere Persistent Memory.

Seamless Hybrid Cloud Experience

With the fast adoption of vSphere-based public clouds through VMware Cloud Provider Program partners, VMware Cloud on AWS, as well as other public cloud providers, VMware is committed to delivering a seamless hybrid cloud experience for customers.

vSphere 6.7 introduces vCenter Server Hybrid Linked Mode, which makes it easy and simple for customers to have unified visibility and manageability across an on-premises vSphere environment running on one version and a vSphere-based public cloud environment, such as VMware Cloud on AWS, running on a different version of vSphere. This ensures that the fast pace of innovation and introduction of new capabilities in vSphere-based public clouds does not force the customer to constantly update and upgrade their on-premises vSphere environment.

vSphere 6.7 also introduces Cross-Cloud Cold and Hot Migration, further enhancing the ease of management across and enabling a seamless and non-disruptive hybrid cloud experience for customers.

As virtual machines migrate between different data centers or from an on-premises data center to the cloud and back, they likely move across different CPU types. vSphere 6.7 delivers a new capability that is key for the hybrid cloud, called Per-VM EVC. Per-VM EVC enables the EVC (Enhanced vMotion Compatibility) mode to become an attribute of the VM rather than the specific processor generation it happens to be booted on in the cluster. This allows for seamless migration across different CPUs by persisting the EVC mode per-VM during migrations across clusters and during power cycles.

Previously, vSphere 6.0 introduced provisioning between vCenter instances. This is often called “cross-vCenter provisioning.” The use of two vCenter instances introduces the possibility that the instances are on different release versions. vSphere 6.7 enables customers to use different vCenter versions while allowing cross-vCenter, mixed-version provisioning operations (vMotion, Full Clone and cold migrate) to continue seamlessly. This is especially useful for customers leveraging VMware Cloud on AWS as part of their hybrid cloud.

Learn More

As the ideal, efficient, secure universal platform for hybrid cloud, supporting new and existing applications, serving the needs of IT and the business, vSphere 6.7 reinforces your investment in VMware. vSphere 6.7 is one of the core components of VMware’s SDDC and a fundamental building block of your cloud strategy. With vSphere 6.7, you can now run, manage, connect, and secure your applications in a common operating environment, across your hybrid cloud.

This article only touched upon the key highlights of this release, but there are many more new features. To learn more about vSphere 6.7, please see the following resources.

Exchange Server 2016 online training courses now available

Microsoft announced the release of four new edX online training courses for Microsoft Exchange Server 2016. If you plan to implement Exchange Server 2016 or Exchange Online, or if you want to make sure that your implementation was done right, the Exchange Server 2016 online training courses are for you.

Course offerings include:

Each Exchange course is targeted to the IT professional audience, with hands-on labs that reinforce student learning. Students are graded on completing each module, as well as on module assessment exams and a final course exam. A Certificate can be earned by completing each course with a passing grade. Courses are self-paced, allowing IT professionals to build Exchange skills at their own pace as their schedules permit.

The first course, CLD208.1x: Microsoft Exchange Server 2016 Infrastructure, is free. The remaining three courses are for-fee courses at $49 USD per course.

edX is a massive open online course (MOOC) provider that was developed by MIT and Harvard University. The Microsoft Learning Experiences team has created a wide range of online training courses for edX, and these four Exchange courses are the team’s latest Office releases. They are the first of seven courses that cover the core skills an Exchange administrator needs to proficiently design, implement and manage an Exchange 2016 and Exchange Online implementation.

Source

Beta Exam 345: Designing and Deploying Microsoft Exchange Server 2016 NOW AVAILABLE

Are you an expert in designing and managing Exchange Server? Are you responsible for the Exchange Server 2016 messaging environment in an enterprise environment? If so, here’s your chance to start down the path to the MCSE certification for free AND help us improve the quality of this exam!

We are opening up 350 beta seats for this beta exam (exam number: 70-345)… This means you can take the exam for free!! BUT… the seats are limited to first come, first served basis–so, register today (these codes will only work through February 12, 2016, meaning you have to register AND take the exam on or before that date)–and we need you take the exam as soon as possible so we can leverage your comments, feedback, and exam data in our evaluation of the quality of the questions. The sooner you take the exam, the more likely it is that we will be able to use your feedback to make improvements to the exam. This is your chance to have a voice in the questions we include on the exam when it goes live. 

To prepare for the exam, review our prep guide and practice the skills listed: https://www.microsoft.com/en-us/learning/exam-70-345.aspx. To prepare for this beta exam, check out my recent blog for ideas: https://borntolearn.mslearn.net/b/weblog/archive/2015/12/31/just-how-does-one-prepare-for-beta-exams-without-preparation-materials.

***Register for the exam at the same site and use code EXCH2016010B to take it for free, but these codes are only valid for exam dates on or before Feb. 12, 2016. Remember: There are a limited amount of spots, so when they’re gone, they’re gone. You should also be aware that there are some country limitations where the beta code will not work (e.g., Turkey, Pakistan, India, China, Vietnam); you will not be able to take the beta exam for free in those countries.

Also, keep in mind that this exam is in beta, which means that you will not be scored immediately. You will receive your final score and passing status once the exam is live.

Well…what are you waiting for? Register before all the seats are gone!

https://borntolearn.mslearn.net/b/weblog/archive/2016/01/13/designing-and-deploying-microsoft-exchange-server-2016-beta-exam-now-available

Certification Update for MCSE: Communication

The MCSE: Communication certification is being updated to support Skype for Business skills.

Starting 28-December, 2015, the following two new Skype for Business exams (currently in beta) will fulfill the MCSE: Communication requirements, provided that the candidate has already earned a qualifying MCSA credential:

The following Microsoft Lync Server 2013 exams retire on 31-March, 2016, but will remain an accepted path towards earning MCSE: Communication until 31-July, 2016:

Please see the MCSE: Communication web page for more details after 28-December.

Translate »